Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Opt Lett ; 49(3): 690-693, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300091

RESUMO

We demonstrate a broadband acousto-optic notch filter based on a tubular-lattice hollow-core fiber for the first time to our knowledge. The guided optical modes are modulated by acoustically induced dynamic long-period gratings along the fiber. The device is fabricated employing a short interaction length (7.7 cm) and low drive voltages (10 V). Modulated spectral bands with 20 nm half-width and maximum depths greater than 60% are achieved. The resonant notch wavelength is tuned from 743 to 1355 nm (612 nm span) by changing the frequency of the electrical signal. The results indicate a broader tuning range compared to previous studies using standard and hollow-core fibers. It further reveals unique properties for reconfigurable spectral filters and fiber lasers, pointing to the fast switching and highly efficient modulation of all-fiber photonic devices.

2.
Adv Mater ; 35(52): e2304152, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37986204

RESUMO

Single-atom catalysis is a field of paramount importance in contemporary science due to its exceptional ability to combine the domains of homogeneous and heterogeneous catalysis. Iron and manganese metalloenzymes are known to be effective in C─H oxidation reactions in nature, inspiring scientists to mimic their active sites in artificial catalytic systems. Herein, a simple and versatile cation exchange method is successfully employed to stabilize low-cost iron and manganese single-atoms in poly(heptazine imides) (PHI). The resulting materials are employed as photocatalysts for toluene oxidation, demonstrating remarkable selectivity toward benzaldehyde. The protocol is then extended to the selective oxidation of different substrates, including (substituted) alkylaromatics, benzyl alcohols, and sulfides. Detailed mechanistic investigations revealed that iron- and manganese-containing photocatalysts work through a similar mechanism via the formation of high-valent M═O species. Operando X-ray absorption spectroscopy (XAS) is employed to confirm the formation of high-valent iron- and manganese-oxo species, typically found in metalloenzymes involved in highly selective C─H oxidations.

3.
Chem Soc Rev ; 52(15): 4878-4932, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37409655

RESUMO

Recently, the missing link between homogeneous and heterogeneous catalysis has been found and it was named single-atom catalysis (SAC). However, the SAC field still faces important challenges, one of which is controlling the bonding/coordination between the single atoms and the support in order to compensate for the increase in surface energy when the particle size is reduced due to atomic dispersion. Excellent candidates to meet this requirement are carbon nitride (CN)-based materials. Metal atoms can be firmly trapped in nitrogen-rich coordination sites in CN materials, which makes them a unique class of hosts for preparing single-atom catalysts (SACs). As one of the most promising two-dimensional supports to stabilize isolated metal atoms, CN materials have been increasingly employed for preparing SACs. Herein, we will cover the most recent advances in single-atoms supported by CN materials. In this review, the most important characterization techniques and the challenges faced in this topic will be discussed, and the commonly employed synthetic methods will be delineated for different CN materials. Finally, the catalytic performance of SACs based on carbon nitrides will be reviewed with a special focus on their photocatalytic applications. In particular, we will prove CN as a non-innocent support. The relationship between single-atoms and carbon nitride supports is two-way, where the single-atoms can change the electronic properties of the CN support, while the electronic features of the CN matrix can tune the catalytic activity of the single sites in photocatalytic reactions. Finally, we highlight the frontiers in the field, including analytical method development, truly controlled synthetic methods, allowing the fine control of loading and multi-element synthesis, and how understanding the two-way exchange behind single-atoms and CN supports can push this topic to the next level.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36315872

RESUMO

Photocatalysis provides a sustainable pathway to produce the consumer chemical H2O2 from atmospheric O2 via an oxygen reduction reaction (ORR). Such an alternative is attractive to replace the cumbersome traditional anthraquinone method for H2O2 synthesis on a large scale. Carbon nitrides have shown very interesting results as heterogeneous photocatalysts in ORR because their covalent two-dimensional (2D) structure is believed to increase selectivity toward the two-electron process. However, an efficient and scalable application of carbon nitrides for this reaction is far from being achieved. Poly(heptazine imides) (PHIs) are a more powerful subgroup of carbon nitrides whose structure provides high crystallinity and a scaffold to host transition-metal single atoms. Herein, we show that PHIs functionalized with sodium and the recently reported fully protonated PHI exhibit high activity in two-electron ORR under visible light. The latter converted O2 to up to 1556 mmol L-1 h-1 g-1 H2O2 under 410 nm irradiation using inexpensive but otherwise chemically demanding glycerin as a sacrificial electron donor. We also prove that functionalization with transition metals is not beneficial for H2O2 synthesis, as the metal also catalyzes its decomposition. Transient photoluminescence spectroscopy suggests that H-PHIs exhibit higher activity due to their longer excited-state lifetime. Overall, this work highlights the high photocatalytic activity of the rarely examined fully protonated PHI and represents a step forward in the application of inexpensive covalent materials for photocatalytic H2O2 synthesis.

5.
Chem Commun (Camb) ; 58(53): 7419-7422, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35695323

RESUMO

Here we report a photocatalytic system based on crystalline carbon nitrides (PHI) and highly dispersed transition metals (Fe, Co and Cu) for controlled methane photooxidation to methanol under mild conditions. The Cu-PHI catalyst showed a remarkable methanol production (2900 µmol g-1) in 4 hours, with a turnover number of 51 moles of oxygenated liquid product per mole of Cu. To date, this result is the highest value for methane oxidation under mild conditions (1 bar, 25 °C).

9.
An Acad Bras Cienc ; 93(suppl 4): e20210081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34706008

RESUMO

Araguainha is a mid-sized complex impact structure formed in sedimentary and underlying basement rocks of the Paraná Basin, Brazil. The structure has strongly deformed sedimentary strata surrounding a granitic core. The central uplift is a region of high geological complexity, comprising different types of sedimentary, igneous (granite) and metamorphic lithologies, plus breccias and impact melt sheets. New ground gravity data was collected to produce a Bouguer anomaly map and to perform a 3-D inversion in order to obtain a 3-D density model of the central uplift. This 3-D density model is consistent with iSALE numerical modeling results, which shows that the rocks in the innermost portion became brecciated and/or melted after undergoing pressure/temperature peaks. The positive anomaly of Furnas and Ponta Grossa formations associated with the numerical model shows that the central uplift is ~16 km wide. Thus, the granite's uplift caused the uplift of the entire stratigraphic package, from its Devonian-aged units to the Permian ones, forming a bull's eye pattern around the granitic core. The results also indicate that Araguainha was formed by a 3 km diameter impactor, and the rocks of the granitic basement rocks were uplifted by ~2 km.


Assuntos
Sedimentos Geológicos , Geologia , Brasil
10.
Faraday Discuss ; 227: 306-320, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33305778

RESUMO

Herein we demonstrate that adding single atoms of selected transition metals to graphitic carbon nitrides allows the tailoring of the electronic and chemical properties of these 2D nanomaterials, directly impacting their usage in photocatalysis. These single-atom photocatalysts were successfully prepared with Ni2+, Pt2+ or Ru3+ by cation exchange, using poly(heptazine imides) (PHI) as the 2D layered platform. Differences in photocatalytic performance for these metals were assessed using rhodamine-B (RhB) and methyl orange (MO) as model compounds for degradation. We have demonstrated that single atoms may either improve or impair the degradation of RhB and MO, depending on the proper matching of the net charge of these molecules and the surface potential of the catalyst, which in turn is responsive to the metal incorporated into the PHI nanostructures. Computer simulations demonstrated that even one transition metal cation caused dramatic changes in the electronic structure of PHI, especially regarding light absorption, which was extended all along the visible up to the near IR region. Besides introducing new quantum states, the metal atoms strongly polarized the molecular orbitals across the PHI and electrostatic fields arising from the electronic transitions became at least tenfold stronger. This simple proof of concept demonstrates that these new materials hold promise as tools for many important photocatalytic reactions that are strongly dependent on our ability to control surface charge and its polarization under illumination, such as H2 evolution, CO2 reduction and photooxidation in general.

11.
Opt Express ; 28(11): 16089-16117, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549439

RESUMO

Lying between optical and microwave ranges, the terahertz band in the electromagnetic spectrum is attracting increased attention. Optical fibers are essential for developing the full potential of complex terahertz systems. In this manuscript, we review the optimal materials, the guiding mechanisms, the fabrication methodologies, the characterization methods and the applications of such terahertz waveguides. We examine various optical fiber types including tube fibers, solid core fiber, hollow-core photonic bandgap, anti-resonant fibers, porous-core fibers, metamaterial-based fibers, and their guiding mechanisms. The optimal materials for terahertz applications are discussed. The past and present trends of fabrication methods, including drilling, stacking, extrusion and 3D printing, are elaborated. Fiber characterization methods including different optics for terahertz time-domain spectroscopy (THz-TDS) setups are reviewed and application areas including short-distance data transmission, imaging, sensing, and spectroscopy are discussed.

12.
Sensors (Basel) ; 17(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257045

RESUMO

Conventional pathogen detection methods require trained personnel, specialized laboratories and can take days to provide a result. Thus, portable biosensors with rapid detection response are vital for the current needs for in-loco quality assays. In this work the authors analyze the characteristics of an immunosensor based on the evanescent field in plastic optical fibers with macro curvature by comparing experimental with simulated results. The work studies different shapes of evanescent-wave based fiber optic sensors, adopting a computational modeling to evaluate the probes with the best sensitivity. The simulation showed that for a U-Shaped sensor, the best results can be achieved with a sensor of 980 µm diameter by 5.0 mm in curvature for refractive index sensing, whereas the meander-shaped sensor with 250 µm in diameter with radius of curvature of 1.5 mm, showed better sensitivity for either bacteria and refractive index (RI) sensing. Then, an immunosensor was developed, firstly to measure refractive index and after that, functionalized to detect Escherichia coli. Based on the results with the simulation, we conducted studies with a real sensor for RI measurements and for Escherichia coli detection aiming to establish the best diameter and curvature radius in order to obtain an optimized sensor. On comparing the experimental results with predictions made from the modelling, good agreements were obtained. The simulations performed allowed the evaluation of new geometric configurations of biosensors that can be easily constructed and that promise improved sensitivity.


Assuntos
Fibras Ópticas , Técnicas Biossensoriais , Escherichia coli , Tecnologia de Fibra Óptica , Imunoensaio , Plásticos
13.
Sci Rep ; 7(1): 2990, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592813

RESUMO

In this paper, we propose a way to simplify the design of microstructured optical fibres with high sensitivity to applied pressure. The use of a capillary fibre with an embedded core allows the exploration of the pressure-induced material birefringence due to the capillary wall displacements and the photoelastic effect. An analytical description of pressure-induced material birefringence is provided, and fibre modal characteristics are explored through numerical simulations. Moreover, a capillary fibre with an embedded core is fabricated and used to probe pressure variations. Even though the embedded-core fibre has a non-optimized structure, measurements showed a pressure sensitivity of (1.04 ± 0.01) nm/bar, which compares well with more complex, specially designed fibre geometries reported in the literature. These results demonstrate that this geometry enables a novel route towards the simplification of microstructured fibre-based pressure sensors.

14.
Opt Express ; 25(8): 8986-8996, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437972

RESUMO

In this article, a new and flexible approach to control the electric field enhancement of bow-tie nano-antennas by integrating them on the lateral of a tapered optical fiber is proposed. The device is driven by a Q-switched laser and the performance of a fabricated nano-antenna in a quartz slide is tested by a Surface Enhanced Raman Scattering (SERS) experiment. A refractive index sensing experiment is also performed and a sensitivity of (240 ± 30) nm/RIU is found in the 1.33-1.35 index range.

15.
Opt Express ; 22(15): 17769-75, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089397

RESUMO

This paper proposes and demonstrates the creation of sections with a high polarization dependent loss (PDL) in a commercial highly birefringent (polarization maintaining) photonic crystal fiber (PCF), via tapering with pressure applied to the holes. The tapers had a 1-cm-long uniform section with a 66% scale reduction, in which the original microstructure aspect ratio was kept by the pressure application. The resulting waveguides show polarizing action across the entire tested wavelength range, 1510-1600 nm, with a peak PDL of 35.3 dB/cm (c.f. ~1 dB/cm for a typical commercial polarizing fiber). The resulting structure, as well as its production, is extremely simple, and enable a small section with a high PDL to be obtained in a polarization maintaining PCF, meaning that the polarization axes in the polarizing and polarization maintaining sections are automatically aligned.

16.
Appl Opt ; 53(17): 3668-72, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24921131

RESUMO

In this paper the development of a side-hole photonic-crystal fiber (SH-PCF) pressure sensor for dual environment monitoring is reported. SH-PCF properties (phase and group birefringence, sensitivity to pressure variations) are measured and compared to simulated data. In order to probe two environments, two sections of the SH-PCF with different lengths are spliced and set in a Solc filter-like configuration. This setup allows obtaining the individual responses of the first and second fiber independently, which is useful for a space-multiplexed measurement. As the employed fiber is sensitive to pressure variations, we report the use of this configuration for dual environment pressure sensing.

17.
Opt Express ; 21(6): 6997-7007, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546082

RESUMO

The interaction frequencies between longitudinal acoustic waves and fiber Bragg grating are numerically and experimentally assessed. Since the grating modulation depends on the acoustic drive, the combined analysis provides a more efficient operation. In this paper, 3-D finite element and transfer matrix methods allow investigating the electrical, mechanical and optical resonances of an acousto-optical device. The frequency response allows locating the resonances and characterizing their mechanical displacements. Measurements of the grating response under resonant excitation are compared to simulated results. A smaller than <1.5% average difference between simulated-measured resonances indicates that the method is useful for the design and characterization of optical modulators.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Luz , Modelos Teóricos , Refratometria/instrumentação , Som , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Espalhamento de Radiação
18.
Appl Opt ; 51(24): 5941-5, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22907026

RESUMO

Real-time monitoring of the fabrication process of tapering down a multimode-interference-based fiber structure is presented. The device is composed of a pure silica multimode fiber (MMF) with an initial 125 µm diameter spliced between two single-mode fibers. The process allows a thin MMF with adjustable parameters to obtain a high signal transmittance, arising from constructive interference among the guided modes at the output end of the MMF. Tapered structures with waist diameters as low as 55 µm were easily fabricated without the limitation of fragile splices or difficulty in controlling lateral fiber alignments. The sensing device is shown to be sensitive to the external environment, and a maximum sensitivity of 2946 nm/refractive index unit in the refractive index range of 1.42-1.43 was attained.

19.
Appl Opt ; 51(16): 3236-42, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22695555

RESUMO

The proposed sensing device relies on the self-imaging effect that occurs in a pure silica multimode fiber (coreless MMF) section of a single-mode-multimode-single-mode (SMS)-based fiber structure. The influence of the coreless-MMF diameter on the external refractive index (RI) variation permitted the sensing head with the lowest MMF diameter (i.e., 55 µm) to exhibit the maximum sensitivity (2800 nm/RIU). This approach also implied an ultrahigh sensitivity of this fiber device to temperature variations in the liquid RI of 1.43: a maximum sensitivity of -1880 pm/°C was indeed attained. Therefore, the results produced were over 100-fold those of the typical value of approximately 13 pm/°C achieved in air using a similar device. Numerical analysis of an evanescent wave absorption sensor was performed, in order to extend the range of liquids with a detectable RI to above 1.43. The suggested model is an SMS fiber device where a polymer coating, with an RI as low as 1.3, is deposited over the coreless MMF; numerical results are presented pertaining to several polymer thicknesses in terms of external RI variation.

20.
Opt Express ; 19(24): 24687-98, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22109496

RESUMO

A photonic crystal fiber (PCF) with a section of one of the holes next to the solid core filled with an index-matched liquid is studied. Liquid filling alters the core geometry, which locally comprises the original silica core, the liquid channel and the silica around it. It is demonstrated that when light reaches the filled section, it periodically and efficiently couples to the liquid, via the excitation of a number of modes of the composite core, with coupling lengths ranging from tens to hundreds of microns. The resulting modal-interference-modulated spectrum shows temperature sensitivity as high as 5.35 nm/°C. The proposed waveguide geometry presents itself as an interesting way to pump and/or to probe liquid media within the fiber, combining advantages usually found separately in liquid-filled hollow-core PCFs (high light-liquid overlap) and in solid-core PCFs (low insertion losses). Therefore, pumping and luminescence guiding with a PCF filled with a Rhodamine solution is also demonstrated.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Modelos Químicos , Nefelometria e Turbidimetria/métodos , Refratometria/métodos , Soluções/química , Simulação por Computador , Cristalização , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...